
Chapter

THE DECISION MAKER’S GUIDE FOR
COMPLETE CLOUD TRANSFORMATION

blueguava

Taking your business to the Cloud with an efficient Go2Cloud transformation strategy

2Contents

Contents

Foreword 3

Why is there resistance against cloud transformation? 4

 What are the alternatives? 5

 The important questions 9

Why Choose Cloud? 10

 Time to Switch 11

Consideration Phase 13

 The First Rule 13

 There’s Always Room to Improve 14

 The Essentials 15

What is the Ultimate Approach for Cloud Transformation? 17

 Microservice Principles 19

 Patterns of Transformation 23

 Data Management 26

 Decoupling the code 27

 Security 29

 Deployment 29

 Retrospective 32

 Afterword 33

About Blue Guava 34

About Amazon Web Services 35

3Foreword

Foreword

Cloud-based solutions are both the present and future of digital businesses. The cloud is proving

to be one of the best alternatives for hosting data, services, and operations. The frequent

technological advances and the constant maintenance of a cloud’s infrastructure ensure that it

will dominate the realm of digitized businesses for years to come.

In the first half of this eBook, we will discuss how to approach cloud transformation by enacting

a solid business strategy that lays the groundwork for the multilayered implementation of

migrating and/or constructing a brand new, cloud-native microservices architecture. In the

second half, we will look at specific approaches, models, strategies, principles, and techniques to

ensure the transformation’s success.

Discussing such a broad topic is easier if there is a specific example we can use to explain

particular solutions. That is why we decided to describe cloud transformation through the

lenses of Amazon Web Services (AWS) — our partner in cloud solutions.

In our years of overseeing and aiding organizations that migrate to the cloud, we have found

AWS to be the optimal cloud choice; few other options provide the broad scope of business

needs that AWS has. As one of our hallmarks at Blue Guava is to render excellence in digital

product development, video and data streaming, quality assurance, and of course, cloud

transformation, we have found an alignment with AWS. They seek to offer cloud services of the

highest quality to their customers, and we also want to extend those services to ours. For some

of the solutions described here, we refer to AWS and use it and its features as examples.

We will examine cloud transformation from different perspectives and our approach will focus

on the most significant areas, which are Platform Security and Operation. Nevertheless, other

considerations like Business, HR, and Governance are briefly touched on.

One last thing before we take you along for this journey: we cannot emphasize enough that

the best ROI and cost-efficiency rates within the cloud can only be attained if we commit to

achieving a cloud-native solution. It is no small task, but if you want the most bang for your

buck, undergoing a complete transformation with rearchitecting, refactoring, and more will be

worth the effort and price.

4Why is there resistance against cloud transformation?

Why is there resistance against
cloud transformation?

Cloud transformation is one of the most sought-after solutions in the business world today.

Unfortunately, it is sometimes a scary concept for some developers and decision-makers.

While professionals are concerned that cloud transformation is an overly complicated

process, they must learn something new outside their current comfort zones — or perform

significant reworking of their existing and proven systems. Decision-makers fret over

plenty of other concerns.

For them, it is a cloud transformation’s price, validity, and efficiency that can lead to

sleepless nights. Decision-makers are afraid of making mistakes, especially if those

mistakes will significantly cost the organization. They will be held responsible for a failed

project that did not meet the desired goals.

Consequently, they decide to involve every other stakeholder (developers, tech experts)

in the decision-making process. They want the entire team to approve and bear the

responsibility together. It could be a good idea; however, if those professionals have their

concerns (transformation is too complicated, requires too many changes, etc.), it can lead

to a dilemma that stalls the project. Some will argue that data migration is too expensive, or

that they will lose ownership of their data by taking it to the cloud, or simply that it will not

cut costs, but only transform their CAPEX of acquiring, upgrading, and maintaining their

system’s components to the OPEX of running operations in the cloud.

While these concerns are all grounded in reality, and there are some unfortunate cases

and bad examples that can amplify such fears, fortunately, the vast majority of cloud

transformations are implemented successfully and result in positive outcomes with

significant benefits.

We have consulted, aided, and overseen enough highly successful cloud transformations

to know that taking your business to the cloud is worth going through the challenges of

adapting to a new infrastructure.

5Why is there resistance against cloud transformation?

What are the alternatives?

Before considering cloud transformation, let’s take a look at some on-premises alternatives

to cloud solutions.

In this category, we chose two options that we consider potentially viable for circumventing cloud

transformation. The question is, however, do they truly provide the same — or mostly the same —

advantages without unnecessary drawbacks or difficulties?

First, let’s take a look at on-premises enterprise software solutions designed with the specific

intent of helping business organizations perform basic tasks such as workforce support, business

transactions, and internal services and processes. It is a rather popular alternative with numerous

advantages. It can serve a company as a secure and efficient enterprise-wide private cloud installed

on the company’s home turf. However, to get the most out of it, it’s essential to consider the

following principles at all times:

Avoiding hardware lock-in

To make use of hardware investments already implemented in their organization and manage

hardware resources in the future, IT managers should prefer a hardware-agnostic solution and

avoid one that specifies strict hardware requirements.

Avoiding vendor lock-in

A responsible IT manager will choose an on-prem platform that can be easily replaced in the future

or bolstered by another platform without reworking all of the organization’s code.

DevOps

To let an organization maintain its competitive edge and support rapid application delivery across

all platforms, any on-prem platform should consistently support DevOps automation with the

other platforms (whether on the public cloud or on-prem) in use by the organization.

Compute services

Computing power is the most basic service a developer needs from any cloud platform. An on-prem

platform should support different compute instances to meet the developers’ various needs.

Self-service provisioning

For developers, a real benefit of the cloud is the ability to “just spin up” compute instances,

databases, storage, and other services on demand without having to go through a lengthy

approval process with IT. To keep developers agile and innovative, any on-prem platform

adopted must support the same self-service, on-demand paradigm of deploying service.

6Why is there resistance against cloud transformation?

Automatic resource lifecycle management

To keep IT free of mundane, day-to-day tasks that become more burdensome as an

enterprise scales, an enterprise platform must automate operations such as setup, updates,

patching, and backups.

Consolidated monitoring and alerts

An on-prem cloud platform should provide a consolidated view of the different resources and

services it provisions so IT can respond to bottlenecks and usage spikes quickly and easily.

Support for public cloud APIs

The private cloud is server-based. You are provisioning servers and virtual machines, configuring

these environments, and then deploying and running apps on these servers and VMs.

In the public cloud, you are driving infrastructure with APIs. The public cloud's API-driven

nature enables its incredible adoption and most significant benefit — near-instant and infinite

capacity through developer self-service.

On the other hand, going into the world of microservices certainly seems like an exciting

challenge. Organizations can optimize their custom code and workflow for a streamlined

code execution process. However, this will require a great deal of effort and attention from all

involved teams. Besides the need for increased project management, it will be challenging to

cover all scenarios emerging from various business needs.

7Why is there resistance against cloud transformation?

Pros

Greater agility

Improved scalability

Increased flexibility due to communication

being distributed over the network

Better fault tolerance due to isolated services

Cloud readiness

A better time to market (faster and easier

development cycles)

Improved debugging capabilities

Platform- and language agnostic services

Cons

Requires DevOps culture and heightened

collaboration between development teams.

Reduced performance (microservices must

communicate, resulting in increased network

latency)

Requests traveling between modules must be

handled carefully (might require extra code to

avoid disruption)

More potential security issues (distributed

communication can fall apart more easily)

Slower and more complicated to implement

for small companies that need to create and

iterate quickly

More difficult to maintain the network,

requiring more load balancing

Testing and monitoring become more

difficult due to the architecture’s

complexity

Refactoring an app across a multitude of

services is much more challenging

Let’s see a concise rundown of the advantages and disadvantages that come with a microservices approach.

8Why is there resistance against cloud transformation?

We describe most of the specific features, benefits, and drawbacks in later sections.

In general, there are always considerations that can help determine the option that best serves our

organization. What we found in the case of these two on-prem solutions boils down to three critical

concerns when directly compared with the cloud:

Elastic scalability1 does not exist in on-premises solutions.

Most of the currently available technology does not support horizontal scaling.

Almost all of the currently available technologies used for infrastructure software or

microservices have critical limitations, making them hard to extend with custom solutions.

1

2

3

1 The purpose of matching the allocated resources with the overall number of resources needed at a given point in

time, combined with the scalability of tracking and adapting to the needs of the application within the confines of the

infrastructure, via statically adding or removing resources to meet application demands.

9Why is there resistance against cloud transformation?

The important questions

Now that we have discussed potential alternatives and seen their limitations, we can talk about

the essential questions decision-makers and relevant stakeholders must look at when deciding

on cloud transformation.

The best question to ask when getting started is this: how can we measure the system we

currently operate and determine if it’s suitable for our business goals?

At this stage, identifying blind spots in the system and examining subcomponents can help

discover just how good the overall quality and efficiency are.

The next batch of questions should revolve around the means and costs of operation, maintenance,

and optimization. As you sit down together as a decision-making unit, you have to make sure a

consensus is reached on the following agenda items:

• What is the level of optimization that we want to achieve, and when do we get there?

• What are the viable options for increasing the level of optimization?

• How much does it currently cost us to keep the system up and running (Underused on-

premises servers running 24/7 can and will generate wasteful costs)?

• How much does maintaining and supporting the system cost us?

• Do we have enough resources available to support the next big scheduled event or

update? If yes, how much will it cost us?

• Have we taken all hidden, non-direct cost elements (e.g. guards on Domain Controllers

(DCs), travel costs, etc.) into account

We highly recommend coming to this discussion as prepared as you possibly can be.

What do we mean by that? The total cost of ownership (TCO) calculated forecast of running and

maintaining the current system projected to the next phases of the design or product lifetime,

estimated costs of planned changes or shifting to a different service model (e.g., complete cloud

transformation), with cost optimization methods already on the table.

10Why Choose Cloud?

Why Choose Cloud?

A complete cloud transformation yields plenty of benefits for any organization. With a cloud-based

solution, a company can turn upfront expenses into variable expenses, reduce costs by doing away

with running and maintaining data centers, increase operational speed and agility, and auto-scale

without additional hardware requirements.

Within a cloud solution, we don’t have to worry about guessing server capacities anymore. Instead,

our business can go global in minutes without many of the requirements and issues that arise from

having to fire up on-prem hardware and configure the software that will run it.

Cloud is essentially your best tool to provide your organization with massive economies of

scale; you will save on many costs by making both production and operation more efficient and

perform at higher, optimal levels.

You will no longer have to operate server farms and pay the enormous costs of maintaining them.

Instead, you will gain access to a virtual cluster of computers that is available to you 24/7/365,

offering the triumvirate of cloud computing models (IaaS — PaaS — SaaS) in a single package.

What makes the cloud so stable and reliable compared to an in-house solution? The fact

that the entire infrastructure rests on firm foundations built by a much larger body of highly

experienced professionals who maintain and upgrade those foundations — as well as the

services built upon them.

Furthermore, as the security component is always a vital element to consider in any solution, you

can rest easy knowing that with high compliances and other services available in the cloud, your

data and business will always be safe and secure up there.

This high level of attention and quality extends to resilience as well. With the right

configuration of DCs, Availability Zones, and Regions, cloud-based services can achieve even

11 9’s of durability — something that would be impossible at worst or hardly feasible at best

within an on-premises environment.

In summary, these features and benefits all boil down to one major takeaway: with cloud supporting

your business, you can expand your company’s coverage regionally or even globally in minutes,

giving the organization the means to leave global footprints across the market.

Time to Switch

How can you perform a complete cloud transformation? What are your options for it?

In general, there are six unique approaches for organizations that want to migrate their business to the

cloud. These migration strategies — also called the “6 R’s” by AWS — are the following:

Rehosting

When an organization’s cloud migration must be scaled quickly to meet a new business

case, rehosting its applications proves to be the ideal solution. In some cases, even

without implementing any cloud optimizations, organizations can save almost 30%

of their costs by rehosting. It’s worth keeping in mind that applications are more

comfortable optimizing if they are already running in the cloud. That includes the

application itself, the data, and the traffic. In AWS, rehosting can be automated with

CloudEndure Migration or AWS VM Import/Export tools.

Replatforming

When you want to change the core architecture of an application, but still seek to

optimize its performance to achieve some business goals, replatforming is probably

the best solution for you. Reducing the amount of time spent on database instance

management can be accomplished by migrating to a database-as-a-service

platform instead.

Repurchasing

Simply replace the product: let go of the old and buy a new one. In most cases where

product replacement occurs, organizations transition to a SaaS platform (e.g., moving a

CRM to salesforce.com).

Refactoring / Re-architecting

In case there’s an emerging business need to expand features, add scale, and improve

performance, achieving such objectives will become more and more difficult in the

application’s existing environment. When reimagining how the application is architected

and developed, using cloud-native features will lead to an optimal outcome. If you’re

considering migrating from a monolithic architecture to a service-oriented or serverless

one, then refactoring is your best option.

1

2

3

4

Why Choose Cloud? 11

12Why Choose Cloud?

Retiring

After exploring an environment to its fullest extent, it is viable to ask each functional area about

application ownership. It could reveal some surprising things. According to AWS, about 10–20%

of organizations’ IT portfolios were found to be no longer useful and could simply be turned off.

Retiring obsolete systems will cut costs, decrease the area that must be secured, and let you

direct your team’s attention to more critical tasks.

Retaining

A golden rule in cloud transformation is only to migrate what makes sense for your

business. As time passes and more of your data and systems are migrated to the cloud, the

retained software percentage will shrink.

Strategy
Cost

Savings

Operation Stability

Improvement

Development

Impact

Organization

Impact

Rehosting

Replatforming

Retire

Retain

Repurchase

Refactoring

5

6

Moderated impact in operation but give more cost!

Low impact in cost optimization and operation.

High impact in operation, require more changed but it brings more cost saving and flexibility.

Not Available

The table below summarizes the efficiency of the strategy from different viewpoints.

13Consideration Phase

Consideration Phase

The First Rule

The first rule of cloud transformation that you must know by heart is this: understand your

business logic, and when fleshing out the strategy, refer to it as many times as possible. This will

help throughout the transformation, as your organization will have enough self-awareness to

know where and what should be improved due to this journey.

Furthermore, knowing the environmental limitations of that business logic is also a

crucial requirement. Some areas simply cannot be changed or improved right away and

must be revisited later on after the initial transformation is completed (more about that

in the next section).

After the business logic and the environmental limitations have been built into it, we

can create the rest of the strategy. Learning from industry best practices — and applying

them straight away — is a good start. However, in the end, the most critical step is to have

a flexible, future-proof strategy in hand that is aligned with the organization’s goals and

initiatives.

A crucial step in creating any cloud strategy is to find the correct focus for implementing

the transformation. And what we suggest every time is to choose the core business

as the center point the changes will bloom around as the implementation begins. This

means that aside from your business's core functions, no other side project or gig or its

related material should be involved in the strategizing. No additional analytics, logging, or

reporting should be part of the new system’s core if the transformation's goal has little to

do with those areas.

As such, the best practice we recommend is to find one or two workloads that are relevant

but not mission-critical to your business. Migrate those first and gain expertise along the way;

at the end you will see the benefits of being in the cloud so you can replicate this on a higher

migration scale. This is also a great way to secure the necessary management sponsorship

and attention for subsequent, major transformation projects.

14Consideration Phase

There’s Always Room to Improve

In case you feel the strategy still has some blind spots, worry not! Letting perfection be the

enemy of good only leads to unnecessary delays, preventing your organization from launching

the implementation. Not committing ourselves to a rigorous, inflexible strategy that leaves

little room for improvement will also make for a better transformation in general, giving us the

means to adapt to unforeseen trends and handle challenges gingerly.

Below, we have collected some areas that must be considered and included in the overarching

strategy. Still, if the specifics are fleshed out during the transformation, you will not lose a single

day to delay while still retaining the capacity to work them in mid-implementation:

Reducing code complexity

A never-ending process that will always result in fewer issues and a more streamlined process.

Simplifying functionality

The purpose of this iterative improvement is the same as with the reduction of code complexity. It is

done with the intent of avoiding the overcomplication of system functionalities.

Heavy computing and data processing

Ensure that data preparation2 is handled and streamlined on a code level. This iteration

should be combined with improving heavy data processing, which requires the construction

of proper databases.

Data Processing

IT education today is unfortunately all too focused on teaching only real-time data processing.

However, with the cloud being capable of both asynchronous and batch processing, your IT

professionals will also have to learn these processes. Cloud transformation makes batch and

asynchronous processing more viable. Adapting your system to workflows with new types of

processing also takes time and iteration. Still, in the end, that extra effort will pay off as these new

data processing types can lead to significant cost reductions.

Asynchronous vs. synchronous

Taking the ability to process asynchronously one step further will help streamline your system

processes if you do away with synchronous operation during the transformation. Instead, focus on

using asynchronous resource access and logging wherever possible.

2 Data preparation is the manipulation (usually preprocessing) of raw data into a form that can readily and

accurately be analyzed for business purposes.

The Essentials

Over the years, we have overseen and aided many cloud transformation projects, and as you

would expect, we had to solve some significant challenges and unforeseen issues. These lessons

have been great for gaining experience and acquiring true mastery over the entire process.

Here are a few tips and tricks, as well as important considerations to keep in mind for the finish line:

System warmup

If nothing happens at the system start, you are probably facing a cold start issue: a

problem where the system launched or restarted and is not working at its regular

operational settings. It usually lacks — or goes through a slow initializing — of internal

objects, cache populating, or other booting subsystems. Furthermore, if multiple

requests come in from the same resource, calling on a CPU-intensive function

(network access, calculation, file reading), sync/single flight can solve it. With it, you

can reduce the number of individual, simultaneous requests by consolidating them into

a single one. After the process is complete, all those individual requests will share the

result. Just keep in mind that it only helps with in-progress requests, and won’t cache

the result after the function call is complete.

Resource usage

Any operation will cost resources such as time and CPU usage. If you encounter a problem

where you are waiting for a resource response at an overly high CPU consumption of 99%,

the chances are that an unlimited limit issue is the culprit. Services must be protected by

introducing basic settings to limit functions.

Data storage location

During the transformation, you will have the opportunity to decide whether you want to store

data in a local or a distributed cache. However, what’s also essential is to let go of useless

databases and API calls in the process.

Unused resources

The transformation yields an unparalleled opportunity to get rid of any unused resource that

clutters your system as quickly as possible. Use it!

1

2

Consideration Phase 15

Technological limitations

Even though you will be using a virtual cluster of unrelated computers with your

hardware, that hardware will still be the source of most of the interactions with the

cloud. Knowing the technical capabilities and limitations of your hardware is the key

to optimizing the best performance. For example, knowing the number of threads

your hardware can perform processing on and reducing the size of the payload and

responses will lead to a more balanced and smoother operation.

Debug and operation strategy

Coming up with an efficient debug and operation strategy is crucial. It can help

identify and describe a whole set of issues without involving a single developer or

requiring code change

Automation

If a system is properly automated in the cloud, there is less chance for (human) failures,

enabling you to develop and operate at a faster speed.

3

4

5

Consideration Phase 16

17What is the Ultimate Approach for Cloud Transformation?

What is the Ultimate Approach for
Cloud Transformation?

Choosing the specific approach to cloud transformation is probably the most critical part of

creating the strategy.

So, which one to choose? Which is the ultimate approach?

Out of the above “6 R’s,” we found refactoring to provide the best cost-benefit ratio.

Code refactoring refers to the process of restructuring existing computer code (changing its

factoring) without changing how it behaves externally. The purpose of refactoring is to improve

the software’s design, structure, and implementation while preserving its functionality.

Within the scope of cloud transformation, refactoring also requires a mindset change to

fully utilize the advantages it can provide for your organization. In a cloud environment,

you can develop more than a single set of resources once a more flexible architecture is

adopted through refactoring.

Also keep in mind that the serverless approach is equally (if not more) important than

microservices. You can focus better on key business challenges and development if more

IT services are used in a fully managed, serverless architecture. It also costs less than

traditional IT architecture in the cloud.

We have collected some of the same options and feature sets that become available through

refactoring, using AWS cloud transformation as the example:

Microservices

With this direction, we can decouple the domain functionality into smaller, more

manageable groups.

Chained microservices

Communication with other services is also a type of resource usage.

Database per service

A recommended solution if we want to separate data traffic and data processing from

other services.

18What is the Ultimate Approach for Cloud Transformation?

Caching / Data distribution

Data does not necessarily have to be read from the database. Within AWS, several other cache

patterns exist that are worth using.

Micro frontends

Another code level to make our application fast and service independent.

Queuing

It’s not always necessary to process data immediately. If the data can wait for processing, then

creating a queue for prioritizing can be the right solution.

Monitoring

Monitoring the infrastructure’s default KPI (CPU, memory) is not enough sometimes. We

recommend adding service-level KPI to measure the app behavior as well. For example, Success /

No Success responses, where not only the exceptions count.

Dependency management:

It is also worth considering how our application collaborates with other services. If we change

anything within one service, then we might unintentionally affect another one.

Cost management

Measuring costs during operation is crucial. This feature will help you control the unoptimized

environment so that it won’t drain your wallet!

Batch processing

It is a simple task to process a single data record, but with batch processing, groups of several

data record streams can be processed at once. This approach can also serve as a cost and

performance optimization option.

Analytics, Business Intelligence

Analytics and KPI must be part of the modern solution development. It is not a privilege anymore

to add more intelligence to the solution, which helps us understand how our customers and the

application behave and optimize the solution for even better customer experiences.

Microservice Principles

Microservice architecture is a variant of service-oriented architecture that organizes an application

to collect loosely coupled services. Within its framework, code is broken into independent services.

Although these services run as separate processes, their output is used as an input to another in a

system of independent, communicating services.

Moving to a microservice architecture can be a huge turning point in your organization’s

life. As always, business goals should be the determining factor in whether to adopt a

microservice architecture.

To help see the bigger picture, below we have collected the main reasons this kind of architecture is

essential and why it pays off to adopt it:

Continuous delivery

If there’s an ideal architecture for ensuring continuous delivery, it is through microservices

where each application is situated in a separate container along with the environment it needs

to run. As such, we can avoid accidental meddling with other applications when editing an app

within its container. With a microservice architecture, you can quickly update your software,

meaning simplified troubleshooting and no downtime for users.

Faster deployment

Microservice architecture can also accelerate deployment while simultaneously

increasing app reliability. Because of the containerized environments that the apps are

running in, they can be moved anywhere without affecting their environments. This

leads to a faster time-to-market.

Increased resilience

In a monolithic architecture, a single failure’s impact can cascade out to all other services

or functions. But thanks to the decentralized, decoupled nature of microservices, if an

update to one container breaks something, it won’t spiral out of control, affecting all the

other separate containers. Even when several systems malfunction or are brought down

for maintenance, the users won’t notice anything.

Adaptation to changing market conditions

Since the microservices approach leads to quicker update deployment and testing, your

organization will be able to follow new market trends better and adapt its products faster.

There’s also the benefit of enabling innovation. Developers no longer have to fear to

experiment, since the apps are isolated so that making changes in one won’t affect all the

others. With the ability to innovate more freely, your organization is bound to get ahead of

competitors and create new revenue streams.

19What is the Ultimate Approach for Cloud Transformation?

1

2

3

4

20What is the Ultimate Approach for Cloud Transformation?

Enabling developers

Developers will have access to the tools to build higher quality software products. With the

containerized approach, developers can build apps using multiple components and then

code each component in the language that is best suited to its function. In a monolithic

architecture, they would have to make sacrifices and choose a single language for all apps,

leading to suboptimal results. The depth of optimization available within microservices can

significantly increase software quality.

Reduce costs

Changing an application in a monolithic architecture is bound to be expensive; as all parts

interact in a monolith, a change cascades throughout the architecture. Consequently, it

leads to more and more time, money, and energy invested into just a single update. And

with each update that builds on the previous one, the monolith becomes more and more

bloated, increasing the number of resources needed to maintain it. With microservices,

you can laser-focus on a single change without having to deal with — and pay for —

modifications spilling over to other applications.

Considerable ROI, reduced TCO

Your teams can work on separate services concurrently, leading to quicker deployment.

Simultaneously, as the developers’ code generally becomes more reusable, development

time will also decrease. Furthermore, the decoupled nature of microservices means that

you will no longer have to resort to expensive machines just to operate your systems —

even basic x86 machines can do the trick. Besides the reduced infrastructure costs, the

increase you gain in efficiency results in less downtime, too.

As you can see, a great microservices architecture can be a total game changer for your business.

Nevertheless, it’s worth keeping in mind that not every business can benefit from this, as some

organizations cannot pull it off. We have collected some crucial considerations to check if your

organization is prepared to be working in a microservices architecture:

You need to be equipped

This architecture requires rapid provisioning and app deployment to capitalize on its advantages.

Developers must be able to provision resources instantly, and that is quite draining in the long run.

You need to keep both human and IT resources fresh and capable of managing fast and frequent

deployments — and bearing the pressure that comes with it.

Robust monitoring is crucial

As your teams work simultaneously on separate services using their language, platform, and APIs,

you will need an efficient monitoring system to oversee and manage the entire infrastructure.

5

6

7

21What is the Ultimate Approach for Cloud Transformation?

Embracing DevOps culture

Learning and adopting DevOps practices is vital if you want cross-functional teams to work

and cooperate effectively. In DevOps, the development and operations teams are no longer

focused on their tasks; their work becomes intertwined, and both groups are responsible

for service provisioning.

More complex testing

The dependencies of services are more widespread in a microservices architecture. As new features

are added, not only does the complexity of services increase, but the number of dependencies also

goes up. As such, resilience testing and fault injection become essential tools for your testers, as

they must make sure that service unavailability, database errors, caching issues, or network latency

do not take down an entire service.

Be prepared for failure

Every organization must be ready to handle failure issues such as system downtime, unexpected

responses, or slow service. In case of failures, the impacted service should still be capable of

running in a degraded functionality without crashing the entire system.

22What is the Ultimate Approach for Cloud Transformation?

For example, in the AWS-based microservices architecture, we can secure the following benefits:

The ability to acquire resources as you need them and

release resources when you no longer need them. In the

cloud, you want to do this automatically.

Successful, growing systems often see an increase in

demand over time. A scalable system can adapt to meet

this new level of need.

It describes systems that are dependable enough to

operate continuously without fail. They are well-tested and

sometimes equipped with redundant components.

The ability for a system to recover from a failure induced

by load, attacks, and failures.

By using a small, template-based approach at the code

level, we can ensure more efficient version handling and

flow separation.

By achieving a full separation at the service level, the system

can avoid the consumption of other services’ memory.

Each microservice would be governed independently,

allowing each team to choose the best tool for the job.

By allowing each service to be responsible only for its own

failures, we can minimize dependencies.

By allowing predefined / automatic sizing for each

microservice based on load.

By leveraging Terraform templates, automated test

scripts, load tests, and improved quality assurance

cycles for deployments.

Elasticity

Scalability

High Availability

Resilience

Flexibility

Autonomous Services

Decentralized Governance

Failure Isolation

Auto-Provisioning

Continuous delivery

through DevOps

23What is the Ultimate Approach for Cloud Transformation?

Patterns of Transformation

Now that we’ve established the basic principles and benefits of the microservices

architecture, let’s discuss some of the standard microservice designs that lay down the

path to a complete transformation.

These designs or transformation patterns are generally built on the six essential principles

summarized below:

Reuse

Although reuse as a microservice design principle has been sidelined in recent years, it is still a valid

and potentially viable solution. Today, its framework has changed to a merit-based reuse approach,

where teams can configure communication models for determining how to adapt microservices for

use outside the environments they were designed in. However, if an existing microservice API does

not match your business goals, it’s more feasible to build one that does.

Loose coupling

This principle can minimize dependencies between services and customers. Through

standardization of contracts expressed via business-oriented APIs, you can ensure that the service's

implementation — or any updates made to it — will no longer impact customers. As mentioned in

previous sections, this provides the organization with the capacity to modify or replace parts of the

system without affecting it as a whole and inconveniencing users with downtimes.

Autonomy

The service’s control measures over runtime environment and database schema during

implementation. Since it leads to an uptick in the service’s performance and reliability, customers

are provided high-quality services that they expect from a microservice solution. Overall availability

and scalability can also be improved by coupling autonomy with statelessness.

Fault tolerance

Because the services within a microservices architecture are independent and

containerized, we can cut off communication to a failed service through a technique called

“circuit breaker.” This principle enforces the idea to create a system where we can prevent

failures from a single service cascading through the distributed system, thus ensuring the

fault has minimal impact on collaborating services.

Composability

Through this principle, we can ensure that the services deliver value in various

environments. Such compositions can form new service aggregates that are often seen as a

new type of application development.

24What is the Ultimate Approach for Cloud Transformation?

Discoverability

A simple principle that communicates the understanding of relevant business goals and the

microservice's technical interface to all interested parties. This means that the service must

function according to customers' exact needs, providing them with the feature set that helps

their operations and realize their business purpose.

The patterns can be categorized into four distinct types: decomposition, integration, observability, and

crosscutting concern patterns. Each pattern comes with its subsets of transformation models, but here we

will focus only on those that are present within AWS:

Decomposition Patterns

Decompose by Subdomain

Domain-Driven Design (DDD) subdomains form the basis of services in this pattern.

Within DDD, the application’s problem space is the business itself. It includes a

domain consisting of multiple subdomains, where each subdomain is matched to a

different part of the business. There are three types of subdomains here: core (key

differentiator of the business, most valuable part of the application), supporting (side

services of the business, can be outsourced), and generic (not a dedicated business

component, usually implemented using off-the-shelf software).

Decompose by Business Capability

In this approach, services are defined as business capabilities — activities that a

business does to generate value, like a business object (e.g., order management,

customer management). Within microservices, these business capabilities can be

organized according to a multilevel hierarchy. This way, an enterprise application can

have top-level categories matched to business objects/departments such as product

development, product delivery, quality assurance, etc.

Sidecar pattern

The segregation of an application’s functionalities into a separate process. This approach

is viable if you want to expand the application with new capabilities without including

additional configuration code for third-party components. Ultimately, this pattern

provides the opportunity to establish loose coupling between the application code and

the underlying platform. Furthermore, it can help reduce both the complexity in the

microservice code and the amount of code duplication — you won’t have to write unique

configuration code for each service.

1

2

3

25What is the Ultimate Approach for Cloud Transformation?

Integration Patterns

Composite Aggregators

A multi-bucket aggregation that creates composite buckets from different sources.

It can be used to paginate all buckets from a multilevel aggregation efficiently,

providing a way to stream all buckets of a specific aggregation. A composite bucket is a

combination of the values extracted for each aggregated item.

Public/Private APIs, Proxy — API Gateway

An API management tool situated between a client and a collection of back-end services. It

serves as a reverse proxy that accepts all API calls, aggregates the various services needed

to fulfill them, and returns the appropriate result.

CQRS — Event Sourcing

CQRS stands for Command Query Responsibility Segregation; it is an application

architecture pattern often used with event sourcing — a collection of patterns based

on persisting the full history of a domain as a sequence of “events.” CQRS splits an

application into two internal parts: the command side ordering the system to update

the state and the query side that acquires information without changing it.

Chained Microservices

With this pattern, we can produce a single, consolidated response to any request. For

example, Service #1 receives the client's request, initiates communication with Service

#2, and starts communicating with Service #3. At the end of the chain, all services return

with a unified response through Service #1. Throughout the communication, the services

are most likely to use synchronous HTTP request/response messaging.

Another important aspect to understand here is not to make the chain too long.

This is important, because the chain's synchronous nature will appear as a long wait

on the client’s side, especially if it’s a web page waiting for the display's response.

There are workarounds to this blocking request/response, which are discussed in a

subsequent design pattern.

Client-Side UI Composition — Micro Frontend

Using this pattern, we can decompose the frontend into separate, semi-independent

“micro-apps” that work loosely together. If you involve several independent

development labs to work on your app, choosing a micro frontend can make it easier

to collaborate.

1

2

3

4

5

26What is the Ultimate Approach for Cloud Transformation?

Database per Service

Here, we can differentiate between private-tables-per-service, schema-per-service, and

database-server-per-service approaches. In the former, each service owns a set of tables

within the database. A service’s access is restricted to that particular set of tables and no

others. In schema-per-service, each service possesses a private database schema. And in the

last approach, each service has its database server.

Observability patterns

Patterns also exist to ensure the reliable operation of applications. There are three main patterns

used in the maintenance of applications: logging, monitoring, and alerts.

While having access to logs, metrics, and traces doesn’t necessarily make systems more observable,

these are powerful tools that, if understood well, can unlock the ability to build better systems.

Crosscutting Concern patterns

These pattern types are applicable throughout the application and may affect all parts

of the application. Logging, security, and data transfer are present in almost every app

module, making these areas crosscutting concerns.

Data Management

It is an umbrella term used to describe the processes of acquiring, validating, storing, protecting, and

processing data to ensure the accessibility, reliability, and timeliness of that data for relevant users.

With a complete cloud transformation, all data management tasks and subtasks become smoother. However,

if we go for a significant increase in handling data's efficiency, we must lay down a proper set of goals.

Separate database queries and scans from primary operations.

Provide the ability to scale the service load against databases.

Decrease application requests.

Increase maintainability.

With the right goals set, it becomes easier to implement the right solutions as well. For instance,

through AWS’s DynamoDB, an organization will be boosted by high-performance data access, data

integration support via Dynamo Streaming, and enhanced data access performance using Global

Secondary Indexes (GSI), and last but not least, reduced response time for queries. On top of it all, all

maintenance overhead is owned by AWS under its Managed Services package.

Consider the benefit of using purpose-built DBs. At AWS, we have more than 10 purpose-built

databases, including relational and non-relational DBs.

6

1

2

3

4

27What is the Ultimate Approach for Cloud Transformation?

Decoupling the code

Using traditional coding techniques for developing and upgrading larger applications

can easily lead to a bloated, monolithic architecture. However, through the concept of

coupling, an organization can make considerable gains while reducing dependencies in their

architecture at the same time.

But what exactly is coupling? It measures the interconnectedness of two functions, modules,

or applications. The lower the coupling “score” is, the better; it is usually credited to a great

architectural design system. From a business point of view, when the coupling is low, you can

also reduce maintenance costs and achieve high code readability.

In microservices, a technique called decoupling is used to attain low coupling. It can ensure that

the system maintains flexibility even as the number of features grows. By decoupling services and

functional areas of applications, you can create a new architecture that offers greater extensibility

and simplicity for developers as newer functionalities are added.

Using a serverless event bus (e.g., Amazon EventBridge), we can decouple services within

an application, resulting in a simplified architecture and allowing each service to operate

independently with no dependence on event consumers.

There are two main approaches to achieve decoupling: synchronous and asynchronous.

Both services must always be available with the former, but they don’t need to recognize

the other's presence. In the latter case, communication occurs and is maintained even if the

receiver is not available.

Synchronous

Synchronous decoupling with load balancers. Exposing a single web server to the outside

world introduces a dependency: the public IP address of the EC2 instance. From this point

on, you can’t change the public IP address again because it’s used by many clients sending

requests to your server. You are now faced with the following issues:

• Changing the public IP address is no longer possible because clients rely on it.

• If you add a server (and IP address) to handle the increasing load, it will be ignored by

all current clients, as they’re still sending all requests to the public IP address of the

first server.

28What is the Ultimate Approach for Cloud Transformation?

Asynchronous

A distributed message queuing service (e.g., Amazon’s Simple Queue Service) is needed to establish

a messaging queue infrastructure. This allows you to move data between your application's

distributed components that execute different tasks without message loss or the need to make

every component always available.

You can solve these issues with a DNS name pointing to your server. But DNS isn’t fully under

your control. DNS servers cache entries, and sometimes they don’t respect your time to live

(TTL) settings. A better solution is to use a load balancer.

Through AWS, once you decouple your services either synchronously or asynchronously, you also gain

access to the following features:

Updates immediately as the change occurs.

Allows asynchronous data processing at the

database level.

Allows asynchronous data exchange.

Provides temporary or forecast value or

decision management.

Sends notifications about data processing to

partner services.

Allows you to keep the value in the cache as

long as it is needed.

Push Provisioning

Querying vs. Awaiting Update

Delayed Answer Queuing

Grace Period

Notifications

Cache Management

29What is the Ultimate Approach for Cloud Transformation?

Security

As mentioned at the beginning, one of the most common reasons for resistance against

cloud transformation — and preference for on-prem solutions — is the need to have data

protected, secure, and close to home.

But gone are the days when the cloud was less secure than internal servers. If anything, with

the amount of attention and constant improvements that cloud solutions receive, your data is

probably safer there than on an internal server.

These are a few considerations from the security aspect:

Internal and external penetration testing

Dynamic and static application security testing for OWASP / CORS

Secure SDLC with bug reporting built into the pipeline

Code Quality / Integrate the Code Security check into the CI/CD pipeline

Unit tests (test against business functionality in the code without using infrastructure

or a persistence layer)

And further Compliance Services

The systema is also protected by stateful firewalls and domain-based DDoS, Rate Limiting, and Web

Application Firewall (WAF) capabilities. And, of course, all of this is GDPR-compliant.

Deployment

When it comes to the new architecture's long-awaited deployment, it is critical to ensure

that deployment times and human error are reduced to a bare minimum throughout the

entire process.

This is best achieved through cloud deployment. Within the framework of cloud deployment,

we mean creating a virtual computing environment that typically involves the setup of a SaaS,

PaaS, or IaaS platform. At the end of the deployment, you will finally have a set of flexible and

scalable virtual computing resources at your disposal.

1

2

3

4

5

6

30What is the Ultimate Approach for Cloud Transformation?

However, to implement it, you will have to choose one of the five cloud computing deployment

models. A model describes the environment where cloud applications and services can be

installed readily available to users, with each model offering different management, ownership,

access control, and security protocol options.

The five models are the following:

Public cloud

Using the standard cloud computing model, a public cloud makes resources such as

applications, storage, and virtual machines available to users remotely. It is a viable option

for web applications, file sharing, and nonsensitive data storage. Public cloud services are

either free, subscription-based, or pay-per-use.

Private cloud

Here, the computing services are available through the Internet or a private internal

network, but only to select users. Organizations opt to use this deployment model, since

private cloud computing provides nearly the same benefits of a public cloud but with

additional layers of control, customization, and a larger set of dedicated resources than

on-prem hosting solutions. Private cloud services also provide a higher level of security and

privacy via firewalls and internal hosting.

Virtual private cloud

With regard to security, privacy, and exclusivity, in concept, it is similar to the private cloud,

but it also provides a configurable pool of shared resources that are stored within a public

cloud environment. In a way, it is a compromise between public and private where a user

has exclusive access to a segment of a public cloud, but access to the VPC itself is restricted

and requires a secure connection.

Hybrid cloud

A combination of two or more infrastructures. It is a mixed computing, storage, and services

environment composed of a private cloud (either regular or virtual), dedicated on-prem servers,

and a public cloud like AWS, with orchestration between the platforms. For example, when an

organization stores critical data on a private cloud and less sensitive information on a public

cloud, they have a hybrid cloud infrastructure.

Community cloud

A collaborative effort to share the infrastructure between several organizations from

a specific community with common concerns. It can be hosted on-premises, at a peer

organization, or by a third party.

31What is the Ultimate Approach for Cloud Transformation?

Within AWS, the chosen cloud deployment model allows for:

Use of Terraform Templates — Infrastructure as Code

Infrastructure as code is the process of provisioning and managing your cloud resources by

writing a template file that is both human-readable and machine consumable. It also provides

extra reliability and security (e.g. in case of DR) for the customer.

Continuous Delivery

Continuous delivery is a lean practice. Its purpose is to keep the production fresh by achieving the

shortest path from the availability of new code in version control — or new components in package

management. It can also minimize the time to deploy and mitigate (or time to remediate production

incidents — TTM and TTR) if it is automated. Continuous delivery can help an organization optimize

process time and eliminate downtime, and if coupled with the complementary practices of IaaC and

monitoring, it can achieve even better results.

Automatic Database Setup and Change Management

Managing database changes in a production environment was always tricky. Data Schema,

Add, Remove Index Changes, or just changing the database settings can lead to temporary

outages or performance degradation.

Preconfigurable Scalability Options

With infrastructure as code, you can write it once and reuse it many times. As such, one

well-written template can serve as the basis for multiple services in numerous regions

around the world, making it much easier to scale horizontally. Within AWS, you can put

together a custom set of options to streamline and accelerate the process by which you

create these reusable templates.

Canary Release Implementation via Weighted Router Settings

The continuous delivery approach can sequence multiple deployment rings for progressive

exposure (also known as “controlling the blast radius”). Users of progressive exposure groups

then get to try new releases to monitor their experience in “rings.” The first deployment ring

is often a canary that tests new versions in production before a broader rollout, such as a beta

test, while weighted router settings let you associate multiple resources with a single domain

name or subdomain name and choose how much traffic is routed to each resource.

The established approval process for deployments

The deployment from one ring to the next can be automated, but it requires an optional

approval step first — the changes are usually signed off on electronically by a decision-maker.

You can create an auditable record of approvals that satisfies regulatory procedures and other

control objectives as you get ready for deployment.

32What is the Ultimate Approach for Cloud Transformation?

Retrospective

What are the general benefits that an organization can gain from a complete cloud

transformation with AWS?

We have looked at the metrics and KPIs of clients who chose AWS, and we’ve seen vast

improvements across all measured areas:

DOWNTIME

• Dramatically improved

DEPLOYMENT

• From monthly to daily deployment

• Automated QA

COST

• The microservices approach brought a three-fourths cost reduction through the

Rehost strategy

• Microservices cost optimization increases cost savings to 50% from the previous 20%

• Configuring to the right size: 20% cost cut

DELIVERY

• Go-to-market time improved to 200%

PERFORMANCE

• Dramatically improved

HIGH AVAILABILITY

• Dramatically improved

CODE COMPLEXITY

• Managed service/microservice

• Improved by 50%

Afterword

Many companies and organizations dream about enterprise-level IT or a highly

scalable software solution. It is easy to express this goal and envision the results,

but it is tough to achieve it. During my professional career, I faced and was fully

involved in many related challenges and witnessed numerous conversions that

only partly succeeded. We gathered these experiences and incorporated the

lessons into each software and DevOps process we have built.

Today, AWS provides all ingredients for applying an enterprise-level IT approach

to anyone, including small organizations. We believe that their services are the

best in the market because their methodology and frameworks helped us approach

this thorny, labyrinthine issue from the right direction, allowing us to create a

significantly easier system to develop, deploy, and maintain. Although it required

more and more considerations for every subsequent decision, the process

remained easy throughout, making our transformation completely worth it!

Péter Dikházi — Founder and CEO of Blue Guava

“

“

33What is the Ultimate Approach for Cloud Transformation?

34About Blue Guava

About Blue Guava

Our goal is to become the best long-term partner that any of our clients could wish for.

With more than ten years of state-of-the-art software development, streaming, and testing

solutions, we have helped market-leader partners increase their revenue and the efficiency

of their IT operations while cutting costs and time. Simultaneously, the software products we

developed for them streamlined and optimized the streaming experience for millions of their

customers across more than 50 countries on three continents.

At Blue Guava, we believe in exceptional customer service. Our passion is to provide our

clients with nothing but the highest quality services that are guaranteed to meet their

needs and help them in their quest to produce excellent software solutions.Our content

delivery, content management software solutions, and quality assurance services will help

you maximize customer engagement, ultimately empowering your business’s customer

adoption and retention capabilities.

HU-MSZT-ISMS/040-40

Contact Us

https://www.guava.blue/contact/

35About Amazon Web Services

About Amazon Web Services

Amazon Web Services is a subsidiary of Amazon providing on-demand cloud computing platforms

and APIs to individuals, companies, and governments on a metered pay-as-you-go basis

AWS products and services provide state-of-the-art solutions for cloud computing, storage,

networking, database, analytics, application services, deployment, management, mobile,

developer tools, tools for the Internet of Things, and more.

With AWS, your company can go global in minutes. By adopting AWS as the center of your digital

business operation, your work gains momentum, your data will be safe and secure, your costs go

down and your revenues up, allowing you the flexibility to scale your business.

As trusted AWS partners, we can guide you on a journey toward complete AWS cloud

transformation. Let us show you the way!

	Foreword
	Why is there resistance against
cloud transformation?
	What are the alternatives?
	The important questions

	Why Choose Cloud?
	Time to Switch

	Consideration Phase
	The First Rule
	There’s Always Room to Improve
	The Essentials

	What is the Ultimate Approach for
Cloud Transformation?
	Microservice Principles
	Patterns of Transformation
	Data Management
	Decoupling the code
	Security
	Deployment
	Retrospective
	Afterword

	About Blue Guava
	About Amazon Web Services

