
Chapter

MULTI-TENANT
DIGITAL PRODUCT DEVELOPMENT

blueguava

Implementing SDK and Frontend Application Separately

2Contents

Contents

Introduction												 3

The Emerging Problem									 	 5

We Don’t Have a Year to Develop								 6

Considering Multi-Tenancy										 7

Why Did We Opt for Multi-Tenancy?								 10

	 Advantages											 11

		 Reusability										 11

		 Saving Time and Effort for QA							 11

		 Backend/Infrastructure as a Code							 12

Building a Multi-Tenant Application								 13

SDK Advantages vs. Disadvantages								 14

	 Integrating the SDK										 16

	 Challenges with SDK									 16

How to Implement QA										 18

	 Why Is It Better to Use Multiple Environments?						 18

	 Environment for Purpose									 19

	 Do We Need Different Applications for All Environments?				 19

	 Are Production Issues Done For? – Further Challenges					 20

Before Release – Optimizing the Application							 21

	 Performance											 21

	 Environmental Problem									 21

	 The Solution: Research, Decide, and Be Ready for the Worst Conditions		 22

Over GA Launch – Hotfixes									 23

	 Priority and Severity										 23

	 Release Frequency										 23

	 The Goal											 23

Afterword												 24

Introduction

As demand for high-quality applications is at an all-time high, so is the pressure on software

development companies to deliver those digital products as quickly as possible.

To keep pace with emerging, disruptive technologies, developers must always be at the top

of their game—which, frankly, is quite taxing on them, especially if there is a time crunch

hanging above their heads.

We found multi-tenancy to be the most efficient concept for providing a balance

between a short development cycle coupled with quick releases and maintaining the

quality of the product.

Through multi-tenancy, a single software in a cloud environment can serve multiple

customers (tenants) simultaneously, allowing them to use the same computing resources. In

other words, they all share the same software application and a single database. Yet, despite

the shared nature of use, customers are entirely unaware of each other; a single tenant’s data

is isolated and invisible to all the other tenants.

3Introduction

4Introduction

Multi-tenancy also provided us the means for more affordable development costs and

generally better use of resources. We maximized the use of computing power and other

resources in case of a single instance between multiple tenants, which led to lower

costs as well—imagine wasting the resources and dedicated infrastructure of an entire

instance for every individual user.

Of course, the multi-tenant approach is not the be-all and end-all solution in software

development. However, multi-tenancy was the logical choice for us and the purpose we had

when developing this specific application, as you will see.

Still, developing a multi-tenant application is no small feat. What can a development team do to

remain functional and organized throughout the product’s SDLC?

We found one particular methodology to be highly effective for this purpose: The separation

of development into two parts, a networking part to the backend API or other APIs and an app

logic part using an SDK, as well as the frontend or UI part.

The concept sounds simple enough, yet it is hard to master. However, once this practice

is integrated into a development team’s operations, it can immensely improve progress,

regardless of code complexity.

The core idea of this methodology is to ease development and shorten the SDLC in

a technology-independent way. We have used this particular approach in a previous

project to develop a multi-tenant application that could potentially be used by millions

of users worldwide. Fortunately, sticking to this strategy ensured the successful, on-

time delivery of the product.

We hope that you will find plenty of utility as well as valuable practices in the following sections!

The Emerging Problem

Software development is a constantly shifting and evolving industry. The continuous,

incremental advances in IT lead to incredible solutions, but managing to keep pace with these

upgrades can be challenging.

Year after year, applications with only a single codebase tend to get more and more complex.

As such, new feature development—or simply following and meeting new standards—becomes

harder and harder to maintain, effectively turning into a never-ending chore for developers.

On the other hand, it’s better not to consider changing the infrastructure or the backend

behind these applications, as such feats either take enormous amounts of time or are

virtually impossible.

Similarly, switching and building a new application using the old one as a foundation might

not be as viable as you think. Unfortunately, existing application code and logic are rarely

reusable for new projects, which means that the code cannot be packed and shared with other

departments or organizations.

The Emerging Problem 5

6The Emerging Problem

On the other hand, multi-tenancy could allow developers to develop applications that

simultaneously service vast amounts of customers at a fraction of a single-tenant

app’s development cost. But what is the best way to approach the development of a

multi-tenant solution?

We’ve found it’s best to use an SDK, complemented with the practice of separating

development into logic and frontend parts. However, before we discuss why that is the best

way to go for multi-tenancy, let’s examine why multi-tenancy was our number one choice for

developing a state-of-the-art application used by millions of customers worldwide.

WE DON’T HAVE A YEAR TO DEVELOP

Time constraints are always a hurdle in any development project. But frankly, high-quality

digital product development takes a lot of time and resources—it usually doesn’t pay off to push

for earlier releases when the product just isn’t ready.

However, there are occasions when developers have no choice but to develop an app as

quickly as possible. Still, writing an application from zero to a market-ready version is

a process that consumes considerable amounts of time and money; in our experience,

implementing a complex application takes a minimum of 6-12 months. Then again, that

estimation does not even include the time and resources backend, infrastructure, and QA

require—which are all integral parts necessary for the product's success.

We can see the problem clearly: We don’t have much time or enough workforce to develop the

same application for more than one platform.

Considering Multi-Tenancy

The reason for adopting a multi-tenant architecture for our application was based on several

significant benefits that this approach quickly provides. These are the following:

COST REDUCTION

Multi-tenancy helps decrease the overall

investment cost of the application in

the long run. As mentioned earlier, the

resources and databases are shared

between tenants, leading to lower costs

than the single-tenant architecture.

Users access the same application and

database, and only those need to be

maintained, making development and

maintenance costs lower. Ultimately,

it’s cheaper and quicker to build a multi-

tenant application at a reasonable price, as

opposed to a single-tenant one.

Additionally, new tenants can be added at no

extra cost either.

PERFORMANCE

Performance is perhaps the most important

identifier of multi-tenancy. As shared

resources and databases are disseminated

between multiple tenants simultaneously,

those tenants can enjoy the speed and

responsivity with which the multi-tenant

application handles their requests.

MAINTENANCE AND UPDATES

Due to code-sharing, no changes are

happening in the data structure of a multi-

tenant architecture. This means that the total

cost of maintenance and updates is reduced

since the same set of resources shared by the

tenants must be updated.

ONBOARDING AND NEW TENANTS

Onboarding processes should always

be as streamlined as possible. And that

requires a design architecture that looks

after the customers’ needs while providing

fast processing of their requests to sign

up—or better yet, the application should

allow users the option of self-sign-up.

Multi-tenancy is an excellent choice for

automating the sign-up and configuration

of subdomain/domain processes. A multi-

tenant application can implement the

tasks of setting up default data for clients

and configuring the app while also letting

tenants configure it independently.

7Considering Multi-Tenancy

8Considering Multi-Tenancy

SCALABILITY

Compared with the single-tenant solution, a

multi-tenancy vendor doesn’t need to create a

brand new, unique data center for every new

tenant. Instead, tenants access one common

infrastructure. Consequently, only that

common infrastructure should be the target

of upgrades. It will improve metrics across the

whole application, offering more scalability to

existing and new tenants.

RESOURCE USAGE

Suppose a tenant is simply not using up their

share of allocated resources. In that case, the

system will immediately optimize resource

usage, redistributing a part of those resources

for another tenant with higher resource

consumption. This way, we can ensure that

the use of all available resources is maximized,

which reduces waste and optimizes costs.

Although the advantages are numerous and

make the concept of developing a multi-

tenant application both cost-effective and

more efficient, there are a few drawbacks

that developers and product owners alike

should be aware of.

SECURITY RISKS AND COMPLIANCE ISSUES

Given the shared nature of a multi-tenant

application, tenants who are not associated with

our organization also use the same database.

While it is almost impossible for them to see our

data, this broader access to the same resources

may reduce security control.

For instance, security issues or corrupted

data from one tenant could spread to

others using the same instance or machine.

Fortunately, this is an infrequent problem,

and if the infrastructure has been configured

well, it should never occur under normal

circumstances. Then again, configuring both the

infrastructure and the security systems the right

way are hefty investments in and of themselves.

Additionally, some regulatory requirements

could potentially get in the way of storing

data within shared infrastructure—regardless

of how secure that infrastructure is.

MANAGEMENT/CUSTOMIZATION

Despite the added integration benefits,

the ability to apply custom changes to a

database is quite limited.

THE “NOISY NEIGHBOR”

Typically, this should not cause issues

or inconvenience users. Still, if one of

the tenants uses an extreme amount

of computing power, performance may

significantly slow down for the other

tenants. However, this is also quite unlikely

to impede users, as most multi-tenant

cloud environments are set up to prevent

cases like this.

UPDATES AND CHANGES

Another conditional drawback, but if the

application relies on integrations with SaaS

products and one undergoes an update,

some issues could ripple through all

connecting applications.

As we highlighted in the introduction, multi-

tenancy is not the be-all, end-all solution

for every scenario. It can provide a series of

significant advantages, but in the end, it is in

no way the ultimate architecture that must

be implemented at all costs.

Considering Multi-Tenancy 9

10Why Did We Opt for Multi-Tenancy?

Why Did We Opt for Multi-Tenancy?

We have examined both the benefits and drawbacks of multi-tenancy. We can see that the

positive outweighs the negative—especially if we make the necessary investments to ensure

that infrastructure and security systems are configured correctly.

In our case, when we began developing an application that was to be used simultaneously by

millions of customers worldwide, the choice was made for us: It had to be built with multi-

tenancy. Otherwise, costs and resource usage would have gone through the roof.

On the other hand, we had another reason besides the multi-tenant approach’s performance

and cost optimization possibilities. It’s no secret that we were developing this application

for subscribing users who would consume several hours of video content almost every

day. Consequently, the app itself had to contain a feature set that provided an excellent

customer experience. Specifically, features such as content handling, customer management,

subscription, and more were mandatory; however, the challenge was finding a way to create

a multi-tenant use of these services.

11Why Did We Opt for Multi-Tenancy?

ADVANTAGES

REUSABILITY

With a multi-tenant approach, reusability becomes a significant benefit that will ultimately save us a

lot of time. Better yet, reusing code can also be applied to both the SDK and Application parts.

Reusability will provide us the following benefits:

SDK

Developers will no longer have to rewrite the entire business log part of an application as

they start developing another platform. Instead, they only need to rewrite parts that are

related to each platform’s difference. However, that is best achieved if developers have a

clear idea of what logic is implemented centrally in the SDK. One way to gain that clarity is

to write tests, which serve two goals. It provides documentation (looking at tests gives the

developer a clearer idea of what the tested part is supposed to do) and assures us that the

examined portion offers the intended functionality.

Frontend Application

The same company will use the same UI for different platforms since it unifies their brand;

everybody will know which app they are using and who the product owner company is.

Although the UI should be changed somewhat based on different platforms, the code

already being tested and used somewhere else will save a lot of time.

SAVING TIME AND EFFORT FOR QA

As time grows short and there’s still a lot of development work left, it’s usually QA that is not given

enough time to test properly, forcing them into an ever-intensifying time crunch.

But with multi-tenant applications, we can also save them a lot of time, providing some breathing

room to focus on testing the most critical aspects of the app. This is because QA does not need to

rewrite the entire test documentation and all the test cases, thanks to the reusable code.

Testers who have tested one part of the application will already be aware of the weak points.

They should be able to probe another aspect where the code was reused with an idea of pitfalls

to look out for. Moreover, tests can be started much earlier into the SDLC. They don’t even need

to be separated into different phases; testing can become a continuous process that leads to

faster feedback with less effort.

12Why Did We Opt for Multi-Tenancy?

BACKEND/INFRASTRUCTURE AS A CODE

Another significant advantage is that we can now write well-balanced code that is much more

accessible, leading to clearer and better functionalities in the multi-tenant approach.

Once we have well-balanced code on our hands, it becomes significantly easier and quicker to

determine which parts should be implemented in the backend and which features should be

implemented in the application part.

With well-balanced code enabled due to our multi-tenant development approach, we can

also leverage microservices for creating a micro-frontend, which saves us a lot of money

and time on the backend side.

Building a Multi-Tenant Application

This is where purpose—a multi-tenant application meant to service millions of customers

consuming content in exchange for their subscriptions—meets methodology. We had to find an

easily applicable method that would allow us to develop the application rapidly.

We decided that using an SDK would give us one of the best, most cost-effective solutions

available in the market. However, as you will see in the following few sections, the SDK’s lack

of customizability is somewhat concerning. Given how vital the UI would be in an application

meant to browse thousands of video content pieces, we needed a much more flexible solution

to handle the frontend side of the application.

What was our solution? We separated the application into two parts; a Software

Development Kit, which contained the business logic (application logic and networking

part to the backend API), and an App part where the UI and smaller logics were

implemented (the frontend). The SDK can also be separated into more single modules

that remain functional by themselves.

However, there is one essential rule to this solution. Minimal (preferably zero) logic should

be implemented in the application part. As we experienced firsthand, dragging the logic into

the app part overcomplicates development and leaves developers trying to figure out which

functionality is implemented where and why. When implementing the separation this way, it

is essential to carefully sort all functionalities into their respective parts before committing to

writing the code on functionalities required centrally—that is, in the SDK.

If we follow these steps, we will also have an easier time maintaining the system in

functional changes. This is because each part can be managed separately if there is

a need for improvements. In contrast, developing and maintaining a multi-module

application is more challenging and would take more time and effort. However, despite

its generally easier, “ready-to-go” nature, Framework/SDK development has its own set

of difficulties developers need to be prepared for.

Another benefit of this approach is that we can modernize the application without touching the

underlying business logic or the interfaces. Even if the code has to be rewritten or modernized,

it can be done so quickly without changing its interface.

Moreover, the SDK has more uses than just building a single application. However, to get the

most out of it, every part should be documented as thoroughly as possible.

Building a Multi-Tenant Application 13

14SDK Advantages vs. Disadvantages

SDK Advantages vs. Disadvantages

Ultimately, an SDK is excellent for providing high-level, complete solutions to a set of specific

problems, without the need to be bothered with the implementation of explicit technologies.

In essence, developers receive these tools after both design and testing have been

completed and are proven to work as intended. This eases development considerably,

as developers are able to focus their attention on making the application even better

thanks to these preconfigured solutions.

For example, by applying SDK in development, we can avoid situations where three entire

teams work on debugging for weeks while trying to solve the issue of content not updating

in the application. Instead, the integrator simply receives an event from the SDK about the

successful content update, and then it will only have to display it.

On the other hand, the high-level nature of the SDK is what makes it less ideal when

having to develop less generic solutions. If developers only need to provide a turnkey

solution to one specific issue, then the SDK will support them in these tasks flawlessly.

However, the more customized the solution is, built directly to serve multiple purposes,

the more complicated development becomes, and the less likely it is that the SDK can

cover that custom nature and high complexity.

15SDK Advantages vs. Disadvantages

In the table below, you can see some of the advantages and disadvantages of a good SDK in general.

ADVANTAGES

Ease of use (the whole team can work

with it efficiently at the same time)

Improved scalability

Thorough documentation explaining how

the code functions

Provides enough functionalities to add value

to other apps

No negative impact on a mobile device’s

CPU, battery, or data consumption

Works well with other SDKs

DISADVANTAGES

Lack of control leading to further challenges

in the development process

Compromises in application experience

Built-in restrictions and pre-made

choices* such as:

•	 Streaming model for data population from

CMS

•	 Image handling for dynamic controls such

as lists

•	 Prioritization of interface events and

background events

•	 Threading model or thread density for

helper tasks

UI stutter, placeholder images, etc. due to

built-in choices and restrictions concerning

image handling and threading, for example

Possible issues in a cross-platform

environment where the user will interact

with the application across multiple

platform SDKs

* Developers hardwire these choices into the platform SDK to simplify the process of
building applications.

16SDK Advantages vs. Disadvantages

I NTEGRATING THE SDK

CHALLENGES WITH SDK

We have divided the project into two separate areas with different scopes and objectives. To see

where we have to go from here, we must understand the exact differences between the two tasks.

Reusability will provide us the following benefits:

Software Development Kit (SDK)

SDK connects to the backend and helps translate the APIs for the frontend application.

We can make development easier by sticking to two essential design principles:

1.	 Have all functional logic on the SDK side of the project.

2.	 Make all functional modules as independent and interchangeable as possible.

For instance, the player and analytics features can be separate modules, whereas all 3rd

party applications and integrated parts can become different modules

Frontend Application

This is the part that creates a visual and interactable connection with the user.

In other words, all UI/UX-related features elements are here. Not only does it

define how the app looks, but how it feels. This is where the user experience

choices and implementations are made, for the most part, making it the user’s

layer for interacting with the product.

The number one objective in any product development project that separates the application

into an SDK and a front-end app part is architecture. If the SDK is not architected as it should

be, it will have significantly more problems than benefits.

For instance, implementing any functional/logic element outside the SDK—e.g., on the

application side—will lead to more difficulties during later stages of development.

If anything, an exemplary SDK implementation should never be rushed. It might seem slow

initially, and it certainly takes time to set it up properly, but it will bring back that time and

more later. What’s important is to be especially careful with maintenance as it can become

significantly trickier and more complicated when several apps use the same SDK.

When using a platform SDK development approach, inherent challenges usually arise mid-

project—up until that point, there should be no significant issues with core development tasks.

However, as the existing application is signed off for design and business reviews, certain

discrepancies will most likely be discovered between the original conceptual designs and the

current application behavior. For instance, requests to eliminate UI stutter or populate a list with

placeholders while the intended images are still loading may arise. Furthermore, differences in

platform controls will also lead to altered behavior across platforms, making this another area

where developers have little power to adjust the SDK’s solution to the original design.

Unfortunately, after the standard application structures have been implemented according

to the SDK’s development paradigms, there’s not much we can do from a development

standpoint to significantly affect the issues that the business or design teams will potentially

raise. In the end, this phase of the development comes down to a choice between either de-

scoping certain features or a prolonged development to find a workaround within the SDK.

If the business, design teams, or both, deem specific issues non-negotiable, developers are

likely to face a lengthy development rework.

Nevertheless, thorough, up-to-date documentation can make a real difference when coping

with such development issues.

17SDK Advantages vs. Disadvantages

How to Implement QA
FACING THE CHALLENGES OF DIFFERENT ENVIRONMENTS

WHY IS IT BETTER TO USE MULTIPLE ENVIRONMENTS?

An essential tip in software development is to provide developers with a sandbox to try

everything out. But it is also important to give QA the same space to perform different

phases for validation.

As we will see in the next section, various teams need different SDLC phases. In our

organization, the product development and QA teams work in close cooperation, and we

usually split the entire cycle into four stages: Development, Internal QA, Performance Test, and

Final Validation. Notice the focus on testing and ensuring that the product will be released in

its best possible state. It is an indispensable element required for the software’s high-quality

performance and success among customers.

Developers should perform tests, not in the local environment, but an independent one

separated from all other departments during the development phase. Additionally, if there

is an external (client-side) QA, the client must be provided with a stable environment that

can function independently of the development environments. This way, if the developers

make any changes, it will not affect the external environment, and the client can continue

running tests uninterrupted.

Similarly, internal tests such as performance tests, load tests, regression tests, or the

final validation itself shouldn’t be interrupted either due to a code change. Giving these

activities an independent, separate environment will solve this issue quickly.

18How to Implement QA

19How to Implement QA

ENVIRONMENT FOR PURPOSE

For the optimal development/QA cycles, we found that it is best to provide the following set of

environments for each team:

DO WE NEED DIFFERENT APPLICATIONS FOR ALL ENVIRONMENTS?

That will not be necessary at all, fortunately.

If the SDK side is handling it well, we can get the back-end data to change the environment via

optimization. Of course, as we saw in earlier sections, this isn’t the only advantage a good SDK

can provide in this regard.

For instance, the application we were building required multiple environments for external use.

It would be released in numerous countries across three continents, which meant we needed

more than one STG and PROD environment. However, the SDK we used allowed us to change

these environments on the applications side!

The key is to enable an environment selector logic in the SDK. It will make the SDLC—development

and testing phases altogether—significantly more accessible, faster, and efficient.

Environment

DEV

QA

STG (Staging)

PROD (Production)

User

Developers

Internal Testers/QA

Vendor

Customers

Internal

Internal

External (client-side)

External (client-side)

Provide all rights and
permissions to the

developers—they need it
to make changes on the fly

Testing and checking the
app before it is ready for
presenting to the vendor

or stakeholder

Final validation of the
product for the vendor

before pushing it to
PROD

The environment that
the customers use

Usage Notes

20How to Implement QA

ARE PRODUCTION ISSUES DONE FOR? – FURTHER CHALLENGES

The separation of the SDK and the frontend application can be a beneficial methodology in software

development. However, it is better to be cautious when applying it to specific challenges.

For example, some of the previously mentioned environments use nearly identical

configurations to the production environment. Consequently, the test results will be much

more reliable than those we will experience after release in production. Naturally, these are

not 100% efficient either, but they are closer to the real deal.

The challenges are rooted in several observable phenomena:

•	 User behavior on the application side cannot be predicted easily.

•	 Scaling and loading the backend part with no deterministic load can cause issues that can only be

experienced in a specific production environment.

•	 Issues or crashes specific to different devices and platforms are also imperceptible during tests.

Some of these issues can be identified if there is a chance to test the application when the

load is low; for example, when most users are asleep or in a smaller country or region where

chances of receiving millions of queries every minute are low. Otherwise, it is also feasible

to consider letting users beta-test the app.

21Before Release - Optimizing the Applocation

Before Release –
Optimizing the Application

PERFORMANCE

Today, virtually anyone can develop a relatively well-performing application that functions

as intended. Scaling that up, quite a few companies can build good to extraordinary

applications that are complex and much more prominent in scope. Even so, many software

developer firms can create multi-tenant applications.

But only a few companies can build apps for as many platforms as needed, and virtually

no company can build apps that function well on all platforms and with the same level of

performance. Only a select few development companies can achieve something in the

ballpark of that level of service.

We have made it into that prestigious club. Now we want to share what’s needed to join it

by developing great, multi-tenant apps that function on almost all available platforms with

nearly the same level of high-quality performance.

ENVIRONMENTAL PROBLEM

The fundamental problem is relatively easy to grasp; different platforms will have

additional hardware and software that the app should be compatible with. Some devices

range from low-end to high-end (e.g., Android versions, Smart TVs, etc.).

Low-end devices can pose a whole new set of issues, some of which we have listed below

(drawing from our own development experiences):

•	 Weak computing hardware (memory, processor).

•	 Weak connectivity (Wi-Fi).

•	 Old software/firmware which the vendor does not maintain.

•	 Unsupported video formats or DRM techniques.

Developers must consider reality, which is that developers and testers mostly use modern,

high-tech devices in a controlled development environment with excellent connectivity.

Most end-users will be using low-end or mid-range devices—and quite often not in the

best network environments.

If a digital product is to succeed, this dilemma must be addressed head-on.

22Before Release - Optimizing the Applocation

THE SOLUTION: RESEARCH, DECIDE, AND BE READY FOR THE WORST CONDITIONS

A great way to circumvent the high-end development/low-end reality dilemma is to optimize the

code and ensure that the app is not developed purely for good “lab” conditions.

That, however, requires plenty of research. The best we can do is gather all available information on

the bottlenecks (both hardware and software) of the supported devices, investigate libraries and

third-party applications to find out whether our app will be compatible with all devices.

However, it is essential to reach a sound, well-researched decision on these issues before

development commences. Product owners, developers, and other stakeholders should decide early

on if creating a new app for all devices is worth the time and effort or whether it’s better to just cut

down on the number of supported devices and models.

Over GA Launch – Hotfixes

After the app has been pushed to production, we should prepare for the onslaught of never-

before-seen issues that only emerge in live environments. Fortunately, with the SDK–frontend

separation methodology, we can achieve better efficiency in hotfix management.

PRIORITY AND SEVERITY

It is most expedient only to release a hotfix

when the issue priority and severity are

both high. Hotfixes generally focus on

getting rid of the most jarring issues and

providing must-have fixes that guarantee

stable performance and positively affect user

experience. Therefore, it is counterproductive

to include anything else, even nice-to-have

fixes or features—those can wait until a giant

patch. Furthermore, these hotfixes need only

a single sanity test; any other test types are

redundant in this case.

Also, keep in mind that issue and crash

numbers will differ in the DEV, PROD, and

STG environments.

Additionally, post-release, it is worth

checking whether infrastructure costs have

not increased after a hotfix affected the

application in any way. While we are there, we

should also examine it from the backend to

ensure that certain response times have not

become significantly longer.

RELEASE FREQUENCY

Either way, it is best if application releases are

as frequent as possible. That conveys user-

centricity and ensures that the app remains

stable and performing according to standards,

keeping overall application quality high.

We have found a high release frequency

(either bi-weekly or monthly) to be most

feasible; this way, the number of hotfixes can

be kept at a low level, only pushing them to

production when necessary.

THE GOAL

With hotfix management, our objectives

are simple and straightforward. To

summarize, here’s a list of the four primary

considerations that will keep the app fresh

and high-quality:

1.	 Release a hotfix only if the issue

priority/severity is high.

2.	 Perform thorough monitoring on both the

SDK and the application side as well—it’s

easy to figure out when it is needed.

3.	 After each release, hotfixes are only

necessary if the issues affect users

significantly and spoil their experience.

4.	 Have a fallback mechanism for each

application at the ready; if there is a

significant production issue, we need to

make sure the means for reverting to an

older but stable and functioning version

is readily available.

23Over GA Launch - Hotfixes

24Afterword

For more than 15 years, we have been developing various desktop, web, mobile, TV, console,

backend, and database applications that run in multi-tenant mode. We admit it is not always

possible to build the application this way. But if you need to run an app in several different modes

and systems with relatively little rewriting, we highly recommend this architecture.

Our projects were about creating brand-new products that can be used on multiple

platforms. The company that contracted us wanted one product: the application. But why

can’t it be two valuable products instantly?

By separating the product into SDK (business logic) and front-end (UI) parts, we can make

development significantly easier and double the gains.

The SDK part can be used and sold as a separate product. Alternatively, it can be used to

develop new applications for a different brand or company. All in all, these other apps can be

showcased as excellent references when negotiating with a new client.

It may seem too complicated at first, but the complexity of a project and the testability of different

conditions determine the level of difficulty this development process entails.

It is important to emphasize that this is not developing a marketing app or a RAD (Rapid Application

Development) methodology. These are product development approaches for projects where

product support and sustainability are required for years.

The product development team consists of developers and people with other interests, such as

BA, BI, Ops, or different levels of QA, where various issues also matter in the overall readiness

and testability parts.

That’s why we consider these separations and approaches essential in the development of

a successful product.

Péter Dikházi – Founder and CEO of Blue Guava Technology

“
“

Afterword

25Chapter

Our goal is to become the best long-term partner that any of our clients could wish for.

With more than 10 years of state-of-the-art software development, streaming, and testing

solutions, we have helped market-leader partners increase their revenue and the efficiency

of their IT operations while cutting costs and time. Simultaneously, the software products

we developed for them streamlined and optimized the streaming experience for millions of

their customers across more than 50 countries on three continents.

At Blue Guava, we believe in exceptional customer service. Our passion is to provide our clients

with nothing but the highest quality services that are guaranteed to meet their needs and help

them in their quest to produce excellent software solutions.

Our content delivery, content management software solutions, and quality assurance

services will help you maximize customer engagement, ultimately empowering your

business's customer adoption and retention capabilities.

About Blue Guava

Contact Us

https://www.guava.blue/contact/

	Introduction
	The Emerging Problem
	Considering Multi-Tenancy
	Why Did We Opt for Multi-Tenancy?
	Advantages
	Reusability
	Saving Time and Effort for QA
	Backend/Infrastructure as a Code

	Building a Multi-Tenant Application
	SDK Advantages vs. Disadvantages
	Advantages
	Challenges with SDK

	How to Implement QA
	Why Is It Better to Use Multiple Environments?
	Environment for Purpose
	Do We Need Different Applications for All Environments?
	Are Production Issues Done For? – Further Challenges

	Before Release –
	The Solution: Research, Decide, and Be Ready for the Worst Conditions
	Environmental Problem
	Performance
	Over GA Launch – Hotfixes
	Afterword

